Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha

نویسندگان

  • Olena V Dmytruk
  • Kostyantyn V Dmytruk
  • Charles A Abbas
  • Andriy Y Voronovsky
  • Andriy A Sibirny
چکیده

BACKGROUND The thermotolerant methylotrophic yeast Hansenula polymorpha is capable of alcoholic fermentation of xylose at elevated temperatures (45 - 48 degrees C). Such property of this yeast defines it as a good candidate for the development of an efficient process for simultaneous saccharification and fermentation. However, to be economically viable, the main characteristics of xylose fermentation of H. polymorpha have to be improved. RESULTS Site-specific mutagenesis of H. polymorpha XYL1 gene encoding xylose reductase was carried out to decrease affinity of this enzyme toward NADPH. The modified version of XYL1 gene under control of the strong constitutive HpGAP promoter was overexpressed on a Deltaxyl1 background. This resulted in significant increase in the KM for NADPH in the mutated xylose reductase (K341 --> R N343 --> D), while KM for NADH remained nearly unchanged. The recombinant H. polymorpha strain overexpressing the mutated enzyme together with native xylitol dehydrogenase and xylulokinase on Deltaxyl1 background was constructed. Xylose consumption, ethanol and xylitol production by the constructed strain were determined for high-temperature xylose fermentation at 48 degrees C. A significant increase in ethanol productivity (up to 7.3 times) was shown in this recombinant strain as compared with the wild type strain. Moreover, the xylitol production by the recombinant strain was reduced considerably to 0.9 mg x (L x h)-1 as compared to 4.2 mg x (L x h)-1 for the wild type strain. CONCLUSION Recombinant strains of H. polymorpha engineered for improved xylose utilization are described in the present work. These strains show a significant increase in ethanol productivity with simultaneous reduction in the production of xylitol during high-temperature xylose fermentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation

BACKGROUND The methylotrophic yeast, Hansenula polymorpha is an industrially important microorganism, and belongs to the best studied yeast species with well-developed tools for molecular research. The complete genome sequence of the strain NCYC495 of H. polymorpha is publicly available. Some of the well-studied strains of H. polymorpha are known to ferment glucose, cellobiose and xylose to eth...

متن کامل

Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha

BACKGROUND Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerev...

متن کامل

Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the depe...

متن کامل

DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast

Lignocellulosic biomass, which contains large amounts of glucose and xylose, is the new ideal feedstock for ethanol production used as renewable liquid fuel for transportation. The naturally occurring Saccharomyces yeasts traditionally used for industrial ethanol production are unable to ferment xylose. We have successfully developed genetically engineered Saccharomyces yeasts that can effectiv...

متن کامل

Metabolic engineering for improved fermentation of pentoses by yeasts

The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbial Cell Factories

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008